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= CMLFormer’s encoder size matched with BERT e for fair comparison
= Multi-task optimization through joint pre-training (
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encoder-decoder attention sub-layer (arrows shown in green and red) are passed as input to the
decoder-decoder cross-attention sub-layer. The decoders exhibit full synchronous coupling
since each requires the hidden states from the other to compute its own hidden states. After
pre-training, the encoder is detached and fine-tuned on downstream tasks.

= Evaluated on HASOC 2021 (code-mixed hate-speech detection)
= Benchmarked against HingBERT (BERTp,se pre-trained with MLM)
= Full fine-tuning of CMLFormer encoder with classification head

Figure 3. Average Attention Score per Token. CMLFormer consistently identifies and attends to
language transitions around switching points, and is agnostic to the nature and number of
transitions; BERT .. fails to identify transitions and attends to trivial tokens.
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