
CMLFormer: A Dual Decoder Transformerwith
Switching Point Learning for

Code-Mixed Language Modeling
Aditeya Baral† Allen George Ajith† Roshan Nayak§ Mrityunjay Abhijeet Bhanja§

†Courant Institute of Mathematical Sciences, §Tandon School of Engineering

Motivation

Code-mixed languages contain frequent and unstructured mid-sentence lan-

guage switches; disrupts grammatical and semantic structure

Existing multilingual models are not natural code-mixers; fail at representing the

inherent characteristics of code-mixing

Standard pre-training objectives lack supervision for language transitions and of-

ten overlook structural dynamics critical to CM understanding

Effective modeling of CM text requires linguistically-aware designs and targeted

objectives focused on switching behavior and multilingual structure

Pre-training CMLFormerbase

Figure 1. Overview of CMLFormer’s pre-training objectives. Token-level tasks (top) capture local

language dynamics such as foundational semantics, cross-lingual token alignment, language

identity, and transition boundaries. Sequence-level tasks (bottom) model broader code-mixing

phenomena, including sentence-level equivalence and global language-mixing complexity.

Setup

Pre-trained on augmented L3Cube-HingCorpus

CustomWordPiece tokenizer with shared vocabulary across code-mixed, base

and mixing languages

CMLFormer’s encoder size matched with BERTbase for fair comparison

Multi-task optimization through joint pre-training

Fine-tuning CMLFormerbase

Evaluated on HASOC 2021 (code-mixed hate-speech detection)

Benchmarked against HingBERT (BERTbase pre-trained with MLM)

Full fine-tuning of CMLFormer encoder with classification head

Overview

Figure 2. The architecture of our proposed approach CMLFormer: The outputs from each

encoder-decoder attention sub-layer (arrows shown in green and red) are passed as input to the

decoder-decoder cross-attention sub-layer. The decoders exhibit full synchronous coupling

since each requires the hidden states from the other to compute its own hidden states. After

pre-training, the encoder is detached and fine-tuned on downstream tasks.

Fine-tuning Results

Model MLM BiLTM SPP BTSP TLC CMI Precision Recall Accuracy F1

BERTbase X 0.189 0.367 0.496 0.249

X X 0.327 0.633 0.504 0.431

X X X 0.223 0.433 0.498 0.295

CMLFormerbase X X X X 0.086 0.167 0.490 0.113

X X X X X 0.120 0.233 0.492 0.159

X X X X X X 0.155 0.300 0.494 0.204

Table 1. Results on HASOC 2021 with different pre-training objectives. CMLFormer outperforms

BERTbase across all metrics when BiLTM and SPP pre-training strategies are applied. AXindicates

the pre-training strategy applied, green indicates a gain in performance and bold indicates the best

performance on that metric.

Learning Switching Point Dynamics

Figure 3. Average Attention Score per Token. CMLFormer consistently identifies and attends to

language transitions around switching points, and is agnostic to the nature and number of

transitions; BERTbase fails to identify transitions and attends to trivial tokens.

Github: cmlformer/cmlformer DS-GA 1012 NLU and Computational Semantics ab12057, aa12938, rn2588, mb9348 @nyu.edu

https://github.com

